Quantifying the Spectral Absorption Coefficients of Phytoplankton and Non-Phytoplankton Components of Seawater from in Situ and Remote-Sensing Measurements

Dariusz Stramski and Rick A. Reynolds

Scripps Institution of Oceanography
University of California San Diego

PACE Science Team Meeting Hyattsville, 14–16 January 2015

Objectives

- □ **IOP METHODOLOGY**: Develop consensus recommendations for improved methodology for hyperspectral measurements of particulate absorption coefficient.
 - Develop a protocol with reduced and quantified uncertainties for an improved filter-pad approach with center-mounted samples within an integrating sphere (IS).
 - Quantify uncertainties and develop improved protocols for traditional filter-pad methods: transmittance T and transmittance-reflectance T-R.
- □ **IOP INVERSION**: Develop a retrieval algorithm for partitioning the total absorption coefficient of seawater into the contributions of phytoplankton, nonalgal particles, and colored dissolved organic matter (CDOM) with a key novel aspect of separating nonalgal particles from CDOM.

Water molecules

CDOM

Suspended particles

Mass concentration SPM, POC, Chl

Size distribution **PSD**

Composition POC/SPM, PFTs

Inherent Optical Properties

$$a(\lambda)$$

$$b_b(\lambda)$$

$$a_w(\lambda) + a_{ph}(\lambda) + a_d(\lambda) + a_g(\lambda) \qquad b_{bw}(\lambda) + b_{bp}(\lambda)$$

$$b_{bw}(\lambda) + b_{bp}(\lambda)$$

Remote-sensing reflectance $R_{rs}(\lambda)$

Water molecules

CDOM

Suspended particles

Mass concentration SPM, POC, Chl

Size distribution **PSD**

Composition POC/SPM, PFTs

Inherent Optical Properties

$$a(\lambda)$$

$$b_b(\lambda)$$

$$a_w(\lambda) + (a_{ph}(\lambda) + a_d(\lambda)) + a_g(\lambda) \qquad b_{bw}(\lambda) + b_{bp}(\lambda)$$

$$b_{bw}(\lambda) + b_{bp}(\lambda)$$

Measurement methodology

Remote-sensing reflectance $R_{rs}(\lambda)$

Determinations of pathlength amplification factor (β) for different configurations of filter-pad method

β -experiments

Sample	Filtration volume [mL]						Commission description
	IS				Т	R	Sample description
S01	5	_	_	_	5	5	Seawater, SIO Pier
S02	3	7	15	23	15	-	Red tide formed by <i>Lingulodinium</i> polyedrum SIO Pier
S03	9	19	41	_	41	41	Particle-laden sea ice, Arctic
S04	3	9	15	-	_	_	A mixture of four cultures: Nannochloropsis, Chlorella vulgaris, Thallasiosira pseudonana, and Porphyridium
S05	5	10	17	25	25	25	Seawater, Imperial Beach Pier (IBP)
S06	9	14.5	-	-	14.5	14.5	Seawater, offshore of San Diego

Water molecules

CDOM

Suspended particles

Mass concentration SPM, POC, Chl

Size distribution PSD

Composition POC/SPM, PFTs

· Inherent Optical Properties

$$a(\lambda)$$

$$b_b(\lambda)$$

$$a_w(\lambda) + a_{ph}(\lambda) + a_d(\lambda) + a_g(\lambda)$$

$$b_{bw}(\lambda) + b_{bp}(\lambda)$$

Partitioning algorithm

Remote-sensing reflectance $R_{rs}(\lambda)$

Partitioning of the Absorption Coefficient of Seawater

A model based on stacked-constraints approach for partitioning the light absorption coefficient of seawater into phytoplankton and non-phytoplankton components

Guangming Zheng¹ and Dariusz Stramski¹

Received 13 September 2012; revised 19 December 2012; accepted 6 February 2013; published 29 April 2013.

[1] Partitioning of the total non-water absorption coefficient of seawater, $a_{nn}(\lambda)$ (i.e., the light absorption coefficient after subtraction of pure water contribution), into phytoplankton, $a_{nb}(\lambda)$, and non-phytoplankton, $a_{dn}(\lambda)$, components is important in the areas of ocean optics, biology, and biogeochemistry. We propose a partitioning model based on stacked-constraints approach, which requires input of $a_{nn}(\lambda)$ at a minimum of six specific light wavelengths. Compared with existing models, our approach requires much less restrictive assumptions about the spectral slope of $a_{de}(\lambda)$ and the spectral shape of $a_{nh}(\lambda)$. Our model is based on several inequality constraints determined from an extensive, quality-verified set of field data covering oceanic and coastal waters from low to high-latitudes. With these constraints, the model first derives a wide range of speculative solutions for $a_{do}(\lambda)$ and $a_{nh}(\lambda)$ and then identifies feasible solutions. Final model outputs include the optimal solution and a range of feasible solutions for $a_{do}(\lambda)$ and $a_{nh}(\lambda)$. The optimal solutions agree well with measurements. For example, the median ratio of the model-derived optimal solutions to measured $a_{ab}(\lambda)$ and $a_{nb}(\lambda)$ at 443 nm is very close to 1, i.e., 1.004 and 0.988, respectively. The median absolute percent difference between the optimal solutions and measured values of $a_{dg}(443)$ and $a_{ph}(443)$ is 6.5% and 12%, respectively. The range of feasible solutions encompasses the measured $a_{ab}(\lambda)$ and $a_{nb}(\lambda)$ with a probability >90% at most wavelengths. Our results support the prospect for the applications of the partitioning model using the input data of $a_{me}(\lambda)$ collected from various oceanographic and remote-sensing platforms.

Citation: Zheng, G., and D. Stramski (2013). A model based on stacked-constraints approach for partitioning the light absorption coefficient of seawater into phytoplankton and non-phytoplankton components. J. Geophys. Res. Oceans, 118, 2155–2174, doi:10.1002/jgrc.20115.

ZHENG AND STRAMSKI: PARTITIONING MODEL OF LIGHT ABSORPTION COEFFICIENT

Derive a large number of speculative solutions.

First identifies all feasible solutions, then finds optimal solution and quantifies range of feasible solutions.

Activities in 2015

☐ IOP METHODOLOGY:

Stramski, D., R. A. Reynolds, J. Uitz, and G. Zheng, Correction for pathlength amplification in measurements of particulate absorption coefficient in the visible spectral region with a filterpad method, *Applied Optics*.

☐ IOP INVERSION:

Zheng, G., D. Stramski, P. M. DiGiacomo, A model for partitioning the light absorption coefficient of natural waters into phytoplankton, non-algal particulate, and colored dissolved organic components: A case study for the Chesapeake Bay, *Journal of Geophysical Research – Oceans*.